Зарегистрируйте бизнес в Т-Банке и получите бонусы до 500 000 ₽

Зарегистрируйте бизнес в Т-Банке и получите бонусы до 500 000 ₽

Подробнее
Идеи для бизнесаБизнес с нуляМаркетплейсыВопросы–ответыЖизнь вне работыСправочник
Идеи для бизнесаБизнес с нуляМаркетплейсыВопросы–ответыЖизнь вне работыСправочник

Как собрать команду для BI-проекта: восемь принципов


В этом году я возглавил проектную команду iFellow, работающую над модернизацией корпоративного хранилища: стандартизацией, валидацией входных данных, приведением типов, нормализацией и последующим реинжинирингом отчетности с учетом всех новых процессов.

Это довольно масштабная задача, которая даже в небольшой компании занимает, с учетом реинжиниринга, не менее года. Под моим управлением оказалась команда из четырех человек: два универсальных дата-инженера и два BI-разработчика, имеющих более узкую специализацию, а именно — Power BI.

Проектная команда по ролям

Первое, что требуется от руководителя в новом коллективе, — это, конечно, знакомство с коллегами, оценка их возможностей, определение сильных и слабых сторон. Необходимо было понять, можно ли оставить команду в текущем составе, а если менять, то насколько кардинально? Поэтому в течение месяца я провел что-то вроде микроскрининга. Это был не официальный аудит со сдачей тестов, а всего лишь беседы и наблюдения: как специалисты справляются с задачами, разбираются ли в теме, отработаны ли у них механизмы взаимодействия.

Состав BI-команды может варьироваться от компании к компании, но есть несколько обязательных ролей

В этом месте самое время рассказать, какие позиции могут потребоваться в команду для разработки хранилищ и аналитики данных. Это примерный перечень, поскольку состав и задачи таких подразделений сильно варьируются в зависимости от специфики компании.

  1. BI-аналитик — специалист, хорошо разбирающийся в бизнес-процессах и понимающий, какие данные и в каком виде помогут компании стать эффективнее.
  2. BI-разработчик — специалист, который на основе потребностей бизнеса работает с базой данных, проектирует, разрабатывает и внедряет понятные бизнесу инструменты визуализации данных: дашборды и отчеты, витрины данных, аналитические системы и т. д. В нашем случае их задача — фронтенд-разработка.
  3. Дата-сайентист — специалист, совмещающий задачи программирования, бизнес-аналитики и некой научной деятельности, например экспериментаторской.
  4. Дата-инженер — специалист с продвинутыми навыками программирования, необходимыми для построения хранилищ и организации обработки данных: например, знаниями алгоритмов, опытом работы с базами данных. В нашем случае они отвечают за бэкенд-разработку.
  5. Системный аналитик — специалист по решению организационно-технических задач, который контролирует процесс ИТ-разработки на всех этапах. Он вовлечен и во фронтенд, и в бэкенд.

Дальше расскажу о том, какие сложности у нас были.

Человеческий фактор

К счастью, оказалось, что наш коллектив достаточно работоспособный в текущем составе, требуется только определенным образом оптимизировать ресурсы. Но на этом сложности только начались. Почему они вообще могут возникнуть?

Первое — обеспечение преемственности. К началу работы над проектом в нашей команде осталось три человека: дата-инженер и два BI-разработчика. Наметилась потребность во втором дата-инженере, поскольку на одном специалисте не должны быть завязаны все процессы. Если он заболеет, уйдет в отпуск или уволится — все сразу остановится.

Второе — ротация. Специалисты, даже ключевые, по разным причинам меняют работодателей. Через некоторое время после того, как мы наняли второго дата-инженера, случилось самое страшное: уволился первый. Новый сотрудник обладал достаточными компетенциями в своей области, но пока не успел ознакомиться со всем необходимым материалом. Поэтому мы срочно открыли еще одну вакансию — вдвоем разбираться быстрее.

Третье — новые задачи. В команде сильно не хватало собственного системного аналитика, который помог бы обеспечить своевременное взаимодействие между разработкой и бизнесом. Например, бизнес хочет получить отчет на основе определенных данных, с определенной визуализацией. Разработчики отвечают на запрос большим количеством технической документации. У меня не всегда есть время переводить ее на язык бизнеса. Соответственно, процесс становится менее управляемым. Отчеты создаются, но не согласуются внутренним заказчиком и уходят на доработку. В итоге реализуется несколько итераций, но движения нет.

Четвертое — конкуренция среди работодателей. Например, в случае дата-инженера на одного высококвалифицированного кандидата могут претендовать десятки компаний.

Все эти нюансы привели к тому, что формирование полноценной проектной команды заняло у нас восемь месяцев. Из чего делаем выводы, что подбор нелинейного персонала для задач аналитики данных — тяжелый и скрупулезный процесс. Как его упростить и усовершенствовать — расскажем далее.

Принципы формирования проектной команды

Расскажу о восьми принципах, по которым я формировал команду.

Первый принцип: опора на лидеров и сильных игроков, которые есть практически в любой команде. Если руководитель только что встал во главе проекта или ему необходимо оптимизировать ресурсы, он может оценить лидерские качества таких сотрудников и предоставить им дополнительные полномочия. Таким образом он приобретает необходимые рычаги управления и влияния без необходимости тотального контроля со своей стороны.

Второй принцип: оценка объема доступных и необходимых ресурсов. Без планирования ресурсов под конкретную масштабную задачу можно оказаться в ситуации, когда в команде недостаток или, наоборот, избыток людей.

Третий принцип: подбор специалистов под конкретный технологический стек. В сфере BI множество цифровых инструментов. Есть некая монолитная база — SQL, Python. Остальное в каждой команде глубоко индивидуально: например, у банков, коммерческих организаций, сотовых операторов — совершенно разные подходы к СУБД. Нужно искать специалистов, которые владеют текущим технологическим стеком, принятым в конкретном подразделении, или как минимум имеют возможность и желание изучать другой инструмент. Особенно это важно в контексте импортозамещения, когда Power BI или Qlik уже могут оказаться неактуальными.

Четвертый принцип: создание сильной мотивации. Если корпоративный сервис, например аналитический, требует модернизации, а в существующей системе велик объем технического долга, — значит, команде не один месяц придется разбирать этот ворох задач. Здесь очень важны активные и инициативные люди.

Хорошая BI-команда — единомышленники, умеющие коммуницировать между собой и заряженные на общий результат

Пятый принцип: знание рынка. Руководитель должен ориентироваться в том, сколько может стоить нужный ему специалист, какова вилка предложений. Для этого стоит наладить сотрудничество с HR-подразделением, изучить различные исследования, например на HeadHunter. В моей практике был обидный случай, когда кандидат идеально выполнил задание по кодингу на собеседовании, проявил заинтересованность, но в итоге выбрал оффер на десять тысяч рублей выше.

Шестой принцип: позитивный опыт коммуникаций. Деловое общение — это хорошо, но иногда руководителю бывает важнее продемонстрировать личные качества.

У одного из наших нынешних сотрудников в момент выбора работодателя было три актуальных оффера. Он захотел побеседовать со мной и во время созвона интересовался абсолютно бытовыми вещами: как в компании празднуют Новый год, ходим ли мы куда-нибудь вместе в пятницу. Вероятно, три предложения были равноценны по зарплате и другим критериям, и человек искал команду, в которой ему будет приятнее находиться. То, что я откликнулся в выходной день, ответил на все вопросы, вероятно, повлияло на окончательный выбор.

Седьмой принцип: интересные собеседования. ИТ-специалисты любят нетривиальные задачи, на которых они могут проявить свои способности. А руководителю нужно проверить профессиональные навыки. Например, на собеседовании с дата-инженером я предлагаю кандидату рассказать, что делает неизвестная функция на хосте, угадать, как она называется, и предложить варианты ее улучшения.

Восьмой принцип: сохранение командного духа. BI-проект — это история про единомышленников, где один занимается аналитикой, другой пишет скрипты для перевода данных и создает таблицы, третий отрисовывает отчеты на основе этих данных. Формируя подразделение, руководитель примерно понимает, как тот или иной кандидат будет влиять на общий вайб. Часто бывает, что сплоченная команда с менее развитыми hard skills показывает результат лучше, чем коллектив профессионалов, действующих «сами за себя».

Хотите рассказать о своем бизнесе или поделиться экспертизой?

В рубрике «Блоги компаний» вы можете бесплатно публиковать статьи о своем бизнесе. Публикации помогут укрепить ваш личный бренд или привлечь внимание партнеров, клиентов, инвесторов.

О чем можно рассказать?

  • Обо всем, с чем вы столкнулись лично, например, вышли на новый рынок, нашли неочевидный канал сбыта или придумали, как увеличить продажи в несезон.
  • О работе с инструментами, сервисами или технологиями для бизнеса.

Для помощи в подготовке статьи мы сделали телеграм-бот. В нем — рекомендации по содержанию статьи и инструкции по ее оформлению. Следуйте инструкциям, пишите статьи и отправляйте готовые тексты так же в чат-бот.

После короткой проверки ваш материал выходит на сайте Бизнес-секретов, а лучшие статьи мы отправляем на главную страницу медиа.

Ждем ваших историй!

Павел Осипов
Павел Осипов

Как вы собираете команду? Расскажите в комментариях.


Больше по теме

Новости